Melatonin and activity rhythm responses to light pulses in mice with the Clock mutation.
نویسندگان
چکیده
Melatonin and wheel-running rhythmicity and the effects of acute and chronic light pulses on these rhythms were studied in Clock(Delta19) mutant mice selectively bred to synthesize melatonin. Homozygous melatonin-proficient Clock(Delta19) mutant mice (Clock(Delta19/Delta19)-MEL) produced melatonin rhythmically, with peak production 2 h later than the wild-type controls (i.e., just before lights on). By contrast, the time of onset of wheel-running activity occurred within a 20-min period around lights off, irrespective of the genotype. Melatonin production in the mutants spontaneously decreased within 1 h of the expected time of lights on. On placement of the mice in continuous darkness, the melatonin rhythm persisted, and the peak occurred 2 h later in each cycle over the first two cycles, consistent with the endogenous period of the mutant. This contrasted with the onset of wheel-running activity, which did not shift for several days in constant darkness. A light pulse around the time of expected lights on followed by constant darkness reduced the expected 2-h delay of the melatonin peak of the mutants to approximately 1 h and advanced the time of the melatonin peak in the wild-type mice. When the Clock(Delta19/Delta19)-MEL mice were maintained in a skeleton photoperiod of daily 15-min light pulses, a higher proportion entrained to the schedule (57%) than melatonin-deficient mutants (9%). These results provide compelling evidence that mice with the Clock(Delta19) mutation express essentially normal rhythmicity, albeit with an underlying endogenous period of 26-27 h, and they can be entrained by brief exposure to light. They also raise important questions about the role of Clock in rhythmicity and the usefulness of monitoring behavioral rhythms compared with hormonal rhythms.
منابع مشابه
Functional central rhythmicity and light entrainment, but not liver and muscle rhythmicity, are Clock independent.
The circadian rhythmicity of hormone secretion, body temperature, and sleep/wakefulness results from an endogenous rhythm of neural activity generated by clock genes in the suprachiasmatic nucleus (SCN). One of these genes, Clock, has been considered essential for the generation of cellular rhythmicity centrally and in the periphery; however, melatonin-proficient Clock(Delta19) + MEL mutant mic...
متن کاملWomen with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night
Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure...
متن کاملبررسی ریتم شبانه آنزیم ان - استیل ترانسفراز در غده پینه آل موش صحرائی
Living organisms have multiple biological rhythms. Some of these rhythms are endogenous and some are under the influence of light and dati cydes during 24-hours. Nowadays periodic changes in melatonin secretion from pineal gland and changes in N-acetyl transferase (NAT) activity which influence the melatonin secretion rate has been acknowledged as a basic rhythm. In this study NAT activity in p...
متن کاملRhythms in ocular and pineal N-acetyltransferase: a portrait of an enzyme clock.
K-acetyltransferase (NAT) is an enzyme which exhibits a circadian rhythm in retinas and pineal glands. it is probably the most extensively studied enzyme that has a circadian rhythm. In this review I will suggest an hypothesis for an enzyme clock based upon the properties of NAT in the chick pineal gland. The salient features of the clock include: enzyme synthesis and degradations buildup of fi...
متن کاملCircadian Clock Gene Per2 Is Not Necessary for the Photoperiodic Response in Mice
In mammals, light information received by the eyes is transmitted to the pineal gland via the circadian pacemaker, i.e., the suprachiasmatic nucleus (SCN). Melatonin secreted by the pineal gland at night decodes night length and regulates seasonal physiology and behavior. Melatonin regulates the expression of the β-subunit of thyroid-stimulating hormone (TSH; Tshb) in the pars tuberalis (PT) of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Regulatory, integrative and comparative physiology
دوره 284 5 شماره
صفحات -
تاریخ انتشار 2003